

Wyze Camera Final Report
Alma Nkemla, Katherine Paton-Smith

 Embedded Systems Cyber Security VIP
 Georgia Institute of Technology

 Atlanta, GA
 ankemla3@gatech.edu, kpatonsmith@gatech.edu

Houlton McGuinn

Georgia Tech Research Institute
 Atlanta, GA

 houlton.mcguinn@gtri.gatech.edu

Jake Ashmore

Advisor
Georgia Tech Research Institute

 Atlanta, GA
jacob.ashmore@gtri.gatech.edu

Abstract—This paper is the final report for the Wyze Camera
Team in the VIP: Embedded Systems Cyber Security. The
document starts by outlining characteristics of the Wyze camera
in addition to previous works regarding vulnerabilities of the
camera. Then current research into determining the RF protocol
is described. The goal of the research is to ultimately create a RF
testing system to reveal more vulnerabilities of the Wyze camera.

I. INTRODUCTION
The Wyze Camera V2 is an affordable Internet of Things

(IoT) Device that can serve as a security camera. The camera is
able to connect through the Wyze smartphone application,
available on both Android and IOS mobiles and can be used
synchronously with virtual assistant technology such as Google
Assistant.

The additional Wyze Sense allows for multiple wireless
contact sensors and motion sensors to be connected with the
camera and application. The Wyze security camera is sold by
Wyze Labs, a company based in Seattle, Washington that
specializes in smart home products and wireless cameras.

Manufacturers of IoT devices have been trying to increase
the number of connected devices, cloud access capabilities, and
mobile applications to further benefit consumers. An increase in
IoT devices, such as the Wyze camera also enable malicious
attacks as IoT devices are connected to the internet and lack
security capabilities and encryption protocols [1]. In addition,
small companies choose not to upgrade their device security in
the development stage as the cost of security may negate its
financial value [2].

II. FUNCTIONAL DESCRIPTIONS

The ecosystem of the Wyze IP Camera V2 as shown in

Figure 1 consists of the Wyze camera, the Wyze App, a sensor
bridge, and additional contact and motion sensors. The camera
communicates through Wifi with the Wyze application. The
sensor bridge is connected by USB to the back of the camera,
and can then communicate via RF with up to 100 additional
contact and motion sensors [3].

A. Camera

The camera has a sandwich structure of 3 printed circuit

boards (PCB): the main board shown in Figure 2, the microSD
card board, and the camera sensor board. The main board
contains the Ingenic T20 System on a chip, outlined in red, a
high-performance video processor based on the MIPS

Figure 1. Functional diagram of Wyze Sensor Bridge

Figure 2. Main Board

instruction set architecture. The board has a microUSB port for
power supply, a USB-A port to connect to the sensor bridge,
and a wireless daughter board for 802.1 1n Wi-Fi connection.

B. Sensor Bridge

The sensor bridge shown in Figure 3 connects to the back

of the Wyze Camera in the USB-A port. It has an antenna for
communication with the Contact and Motion Sensors. The
CC1310 microcontroller (MCU), outlined in orange, is
responsible for processing the RF communication.

C. Motion Sensor and Contact Sensor

The motion and contact sensors each have antennas and the

CC1310 MCU for RF communication, outlined in red on the
motion sensor Figure 4 and in brown on the contact sensor
Figure 5.

D. CC1310 Microcontroller
The CC1310 MCU is responsible for processing the sub

1GHz RF communication between the sensor bridge and the
contact and motion sensors. The chip consists of two CPUs, the

ARM Cortex-M3 responsible for the application layer and the
ARM Cortex -M0 which processes the RF signals [4].

The CC1310 MCU can use many different protocols such
as IEEE 802.15.4, Wireless M-Bus (T, S, C Mode), 6LoWPAN,
or MIOTY [5]. However Wyze uses their own proprietary
protocol for the Wyze Sense.

III. EXISTING VULNERABILITIES
Up to now, known vulnerabilities in the Wyze camera are

mainly the result of weak encryption which can result in
leakage of sensitive data such as users’ passwords or emails. In
addition, the Wyze camera uses a variety of open source
libraries and frameworks that can be found and used by anyone
on the internet.

In 2019, Wyze Labs, the company that owns the Wyze
Camera, was sued following a data breach that exposed the
information of 2.4 million users, who had their cameras
connected to their phones or WIFI. This attack targeted a
database which Wyze Labs had copied from their main
production servers and left open on the internet with its
previous security protocols removed [6]. Although this security
breach was the result of human error, Wyze camera
vulnerabilities have historically been caused by weak
encryption and leakage of data [7].

A. Denial Of Service Attacks
A Denial-of-Service (DoS) attack intentionally makes a

service inaccessible to its users by disrupting the functions of
the device or network. The Wyze camera firmware Linux
Kernel version (3.10) is vulnerable to a DOS attack through an
auth_reply message that triggers an attempted build_request
operation [8]. In addition, the TCP Stack in the kernel version
has improper implementation of a SYN cookie protection
mechanism in the case of a fast network connection. This
vulnerability can allow attackers to send TCP SYN packets
which can lead to total shutdown of the affected resource and a
denial of service for the user [9].

B. Man-In-The-Middle Attacks
Because of lack of authentication, the camera is vulnerable to

man-in-the-middle attacks. A man-in-the-middle attack is when
a third party intercepts the communications between two parties
and listens in to or modifies the traffic between the two.

A previous semester launched a successful MITM attack on
the Wyze Camera to capture firmware for the Wyze Sense
bridge, discussed in more detail in Section VI.A.

C. Weak Root Password
The Wyze camera can also be accessed directly through a

serial connection on its main board. Following this connection,
the camera has a root password set by the manufacturers on
every device produced to protect its firmware from tampering.
However, this password only uses an encryption algorithm that
uses 8 characters of entropy, meaning that the password is very
weak. The password has previously been deciphered and was
known to the public and available online as “iSmart12”[10].

Figure 3. Functional Diagram of Wyze Sensor Bridge

Figure 4. Motion Sensor

Figure 5. Contact Sensor

The serial port connection on the main board can be seen in
Figure 2 (Section II.A).

D. Semester’s Focus
The focus of this semester is determine the RF protocol to

then build SDR spoofing software using Scapy for the contact
and motion sensors. There will also be an attempt at reverse
engineering the main program binary to find how wireless data
is used by the program. The goal is to ultimately combine these
tools to build a RF testing system to discover more
vulnerabilities with the camera.

IV. ICAMERA BINARY
Communication between the host (the camera) and the

dongle is done through packets. By going through various
functions related to packet read and editing names and data
types information can be discerned about the packet structure
of incoming RF data [11].

A. Understanding Packets
Communication between the camera and the dongle is done
through packets. The general communication between the
dongle and the camera is done in on packets of variable lengths:

• The two bytes magic field can be:
o [aa][55] indicates sending information from

the host to the dongle
o [55][aa] indicates sending information from

the dongle to the host.
• The single byte type field indicates how

communication between the host and the dongle
behaves. The type can be either:

o 0x43: This means that the receiver will
respond with a packet of type 0x43 and
“cmd” field set to “X+1” with any additional
data put in the payload.

o 0x53: This means that the receiver will first
respond with a simple ACK packet of type
0x53, “cmd” field set to 0xFF and the length
set to X. There is no pay load in this case.
Following the ACK packet, depending on the
command, the receiver can respond with zero
or more packets of type 0x53 and “cmd” field
set to “X+1”. The response may or may not
include a payload and its length field will be
se to reflect the size of the data.

• “Payload” field describes the parameters for a given
command.

• There exists a length field tallying the total length of
the cmd field, payload and checksum.

• The checksum which is big-endian uint16_t sum of the
data in the packets [11].

The description of the protocol between the dongle and the
camera can provide a little bit of insight regarding to the packet
structure of communication between the camera and sensors.

V. SIGNAL ANALYSIS OF THE RF PROTOCOL
This semester the focus is on reverse engineering Wyze’s

proprietary RF protocol between the contact to determine the
encoding mechanism which can then lead to finding the sync
word and preamble. Determining the RF protocol can be done
by analysing Over-The-Air (OTA) packets of recordings between
the camera and the sensor.

A. Packet Captures
A packet capture intercepts a data packet crossing a point in

a data network, and once captured, the packet can then be stored
and later analyzed. To capture packets going between the
dongle and sensors, an Ettus N210 SDR with a standard vertical
antenna was used. GNU Radio was used as the software to
record the packets. The GNU Radio flowgraph used to record
and the block diagram for data flow can be seen below:

Figure 6: Block diagram showing where packets and logs were captured.

Figure 7: GNU Radio flowgraph used to record packets for playback.

Serial logs were captured using a direct connection to the

Wyze Camera, which outputs received packets as part of its
debug information. Alternatively, serial logs can be directly
captured using WyzeSensePy [12], and a USB connection to
the dongle, which implements the communication protocol
between the dongle and camera.

B. RF Overview
Information from the contact and motion sensor is generated

by their microcontrollers and modulated through Frequency
Shift Keying (FSK) as seen by last semester’s students.
Universal Radio Hacker (URH) can aid in analyzing air

captures of packets to analyze the protocol between the camera
and the dongle.

C. Sensor Over-The-Air Packet

By looking at Over-The-Air (OTA) packets of recordings,
using URH, between the motion and contact sensors with the
camera, we can try to gain a better understanding of the
communication protocol.

1) Packet Contents
 Not all data transmitted in over-the-air (OTA) packets is

currently known. We suspect OTA packets from sensor-to-
dongle contain the MAC of the sensor which is used for
identification. Additionally, there is a 16-bit sequence counter
that increments each time there is an event (open/close,
motion/no motion). This sequence counter resets to 0 every
time the sensor is powered down. Finally, the type of event is
transmitted (open/close, motion/no motion).

2) Communication Protocol
When an event is detected, the sensor transmits a packet to

the dongle. After the dongle has received the packet, the dongle
replies with an “ACK”, communication that it received the
event alert from the sensor. The dongle keeps state of sensors
in memory. For a contact sensor, sending two “open” event
alerts consecutively, will result in the second message being
considered an error, and not another event. This state keeping
seems only to be related to the state the sensor is in (open/close,
motion/no/motion) and not related to the sequence counter
embedded in the message.

3) Recordings
The packets were transmitted through a frequency of

906.7MHz with a modulation type of FSK. Using URH the
packets could be sent to the dongle and from the dongle to the
host. These recordings were taken from three states of the
motion sensor: motion, connect, delete. Further information of
the radio parameters of captures can be seen in figure 11.

4) Motion Sensor
An analysis of the motion sensor captures was done through

the tools of URH along with an analysis of the log files using
a parser in order to gain more insight on the data about Over.

D. Using Universal Radio Hacker
URH serves as a tool to analyze the OTA packets from

communication between the camera and the motion sensor.
There are two discernable packets: Ones in which the first 16

bytes are the repeating hexadecimals, 0xd534acca as seen in
Figure 8 (yellow) and the other in which the first 16 bits are
0xaa695995 as seen in Figure 9 (yellow).

Figure 8. First type of packet capture of communication between the motion

sensor and the camera

Figure 9. Second type of packet capture of communication between the

motion sensor and the camera

From the documentation in the TI SDK of the CC1310 MCU

[12], the structure of packets will include the preamble, sync
word, a header of variable length containing length and address
information for the receiver such as the length field, magic field
and type field, payload and a crc to verify the message’s
integrity. There are different packets structures in which the
order of these fields vary with a format in which the length field
doesn’t have to be located at the beginning of the header and a
format in which the header includes the crc.

Discarding the first 16 bytes as the information before the
header as the preamble and the sync word, we can try get
information about the header. All packets with a repeating hex
of 0xd534acca have columns 17 and 18 with hex of 0xaa
indicating the magic field or the communication direction
between from the camera to the sensors. In addition the packets
next couple of bytes were 0xcb53350069f ending at column 34
as seen in Figure 6 (green). From columns 41 and onwards we
can see that were the payload begins as information being
transmitted by each packet differs. Packets with starting bits of
0xaa695995 instead have a magic field of 0x55 at columns 17
and 18 as seen in Figure 9 (green). The remaining columns from
column 34 to column 41 (payload) serves as byte that may
contain the type or the length field, however more work is
needed to pinpoint these two fields.

E. Log Analysis
In addition to analyzing the OTA packets between the

motion sensor and the camera, comparing the logs from
communication between the camera and the motion sensor, and
the packets can provide insight into the RF protocol.

The WyzeSensePy parser is a python package attempting to
implement the communication protocol between the camera
and the USB dongle [12]. However many of the commands
found in the parser can be viewed in the logs for the
communication between the camera and the sensors. The parser
sorts through the various commands in the log in terms of
hexadecimals and type as seen in Table 1. In Table 1, HD refers
to commands initiated from the host (camera) and DH refers to

commands initiated by the dongle. The type of command can
either be asynchronous with hexadecimal of 0x53 or
synchronous with hex of 0x43. The fields in the logs are not
always commands as indicated with CMD but could also be
notifications, indicated with NOTIFY.

Table 1. WyzeSensePy Parser Commands

Name Type CMD

HD_CMD_GET_ENR 0x43 0x02

HD_CMD_GET_MAC 0x43 0x04

HD_CMD_GET_KEY 0x43 0x06

HD_CMD_INQUIRY 0x43 0x27

HD_CMD_UPDATE_CC1310 0x43 0x12

HD_CMD_SET_CH554_UPGRADE 0x43 0x0E

ASYNC_ACK 0x53 0xFF

DH_CMD_FINISH_AUTH 0x53 0x14

DH_CMD_GET_DONGLE_VERSION 0x53 0x16

DH_CMD_START_STOP_SCAN 0x53 0x1C

DH_CMD_GET_SENSOR_R1 0x53 0x21

DH_CMD_VERIFY_SENSOR 0x53 0x23

DH_CMD_DEL_SENSOR 0x53 0x25

DH_CMD_GET_SENSOR_COUNT 0x53 0x2E

DH_CMD_GET_SENSOR_LIST 0x53 0x30

DH_NOTIFY_SENSOR_ALARM 0x53 0x19

DH_NOTIFY_SENSOR_SCAN 0x53 0x20

DH_NOITFY_SYNC_TIME 0x53 0x32

DH_NOTIFY_EVENT_LOG 0x53 0x35

From the log files, communication between dongle to

camera always begins with the first two fields as either [55][aa]
indicating a message received from dongle or [aa][55]
indicating a message written to camera. This is shown in both
Figure 10 and Figure 11 in blue (The fields are bolded for better
clarity). Following the communication direction the type field
of the packet either 0x43 or 0x53 determines the response of
receiver. In the case of the packets from the motion sensor, most
of the log files with type field of 0x43 where discarded due to
errors in recording the packets so no information could be

discerned from those packets. However packets with type field
0x53 (green in both Figure 10 and Figure 11 results in the
receiver sending an ack packet using the command,
ASYNC_ACK, 0xff (red in both Figure 10 and Figure 11) with
no payload.

Figure 10 differs from Figure 11 due to the field following
the type field 0x53. From the logs, the 4th field could either be
the hex 0x19 (pink), which refers to the
DH_NOTIFY_SENSOR_ALARM notification from Table 1,
followed by the hex 0x35 (orange), which refers to the
DH_NOTIFY_EVENT_LOG notification shown in Figure 10
or a command (orange) followed by the hex 0x19 (pink) shown
in Figure 11.

Figure 10. Communication with no commands between [53] and [19]

This difference in the 4th and 5th field of the logs also
affected the way in which the ACK packet sent by the dongle.
The ACKS packets 4th field is always equivalent to the initials
message’s 5th field. The 5th field of every packet is referred to
as the cmd field indicating a command (cmd) between sensor
and the camera (orange in Figure 10 and pink in Figure 11).
Following the cmd field and the ASYNC_ACK, 0xFF, is the
hexadecimal 0x02 which refers to the command
HD_CMD_GET_ENR, in the ACK packets and either the hex
0x6a or the command ,HD_CMD_GET_KEY (Figure 11) or
0x86 (Figure 10), values in which a command has yet to be
determined.

Figure 11. Communication with command between [53] and [19]

A further analysis of the logs is required to find out more about
commands following 0xff in the ACK packets and commands
prior to the payloads in packets carrying information.

F. Replay Attack
Using captured packets from a contact and motion sensor,

an USRP N210 was used to replay the recorded packets back to
the dongle. The dongle successfully received the packets, as
verified by the chosen input being displayed in the Wyze app.
This was done using the GNU Radio Flowgraph seen in Figure
10. The first packet associated with an alert contains a 4-hex
character value, that increments upwards each alert and resets
when a sensor is powered off. When captured packets were
replayed, this 4-character field returned to the value that was
captured. It is unknown what these 4-characters represent, but
given their incrementing when an event happens it is possible,
they are some kind of sequence counter. Recorded packets are
able to be sent in any order, as long as the event types alternate,
and will be processed successfully by the dongle.

Figure 12. GNU Radio Flowgraph used for Successful Replay Attack

 Expanding on the replay attack, URH was used to modulate
packets so that arbitrary changes could be made. The settings
used to successfully modulate packets can be seen in Figure 13.

Figure 13. Settings Used to Modulate Packets

Using URH, arbitrary packets were able to be sent to the
dongle. Using a recorded contact sensor open alert, nibbles and
then bytes were zero’d out sequentially and then transmitted
with a contact sensor close alert in between. However, no
change in the message’s logs was observed. Given this, and the
large variance that was observed for OTA packets payloads, it
is very likely Wyze is performing packet whitening to aid in
transmission. Packet whitening improves the transmission by
exclusive-or’ing the data payload, with a stream of bits given
by a pseudo-random sequence [14]. The whitening parameters
used are currently unknown.

VI. REVERSE ENGINEERING RF PROTOCOL

A. Capturing the CC1310 Firmware
Every time the camera is started, it calls out for the latest

version of the CC1310 firmware. By setting up a Man in the
Middle (MITM), a copy of the firmware can be obtained. A
previous semester used mitmproxy to do this. The basic idea is
that a host running mitmproxy sits in the middle of the traffic
flow between a client and server, pretending to be the server to
the client and pretending to be the client to the server [15] . In
this case, mitmproxy acts as the server to Wye’s client camera
application while also acting as a client to the Wyze servers, as
shown in Figure 14. When the camera calls for the CC1310
firmware update, mitmproxy is then able to relay that request
from the camera to the server, and then capture and decode the
firmware being sent back from the server.

Figure 14. Mitmproxy Setup

 This semester’s focus is working on reverse engineering
the captured CC1310 binary to find where the RF protocol is
defined. The binary is run on the ARM Cortex -M3 processor,
which is a 32-bit architecture.

B. Ghidra
Ghidra is an open-source software reverse engineering tool

developed by the National Security Agency. Some of its
capabilities include disassembly and decompilation of binary
code . This makes Ghidra a great tool to use for reverse
engineering the RF protocol, as it can disassemble the captured
CC1310 binary into ARM Cortex -M3 assembly code, and also
decompile that into easier to read C code.

C. Setting up Memory Map in Ghidra
A memory map details the structure of memory in a CPU,

which often includes Flash memory, SRAM, and various
peripherals. Part of the Cortex -M3 memory map can be seen in
Figure 15 [4]. This is important as memory addresses are often
used directly in assembly code. Without the memory map, it
can be difficult to understand what each address is referencing,
and therefore difficult to understand the functionality of the
code. Ghidra is able to use a memory map to create clearer
disassembled and decompiled code. However manually setting
up the memory map can be tedious. A faster method to do so
involves using a Ghidra script.

Figure 15. Cortex-M3 Memory Map

A System View Description (SVD) file contains detailed
functional descriptions of the system in ARM Cortex-M CPU’s,
including the memory map [18]. The YouTube video “Bare-
metal ARM firmware reverse engineering with Ghidra and
SVD-Loader” explains how an SVD-Loader can be used to
make reverse engineering firmware easier [19]. The SVD-
Loader is a Ghidra script which parses an SVD file to
automatically set up the memory map. For use with the CC1310
firmware, the SVD-Loader is downloaded from GitHub [20]
and added to the Ghidra Scripts path. It is then run with a

CC1310.svd file. The generated memory map in Ghidra for the
CC1310 MCU can be seen in Figure 9, which matches that from
the technical manual.

D. Proprietary Radio
Wyze uses their own proprietary radio protocol. Texas

Instruments (TI) details their recommended proprietary radio
commands and packet structure in the Technical Manual [4].

The Radio commands are used to set up the radio mode,
transmit packets, and receive packets. Figure 17 shows what
appears to be potential radio setup function in the firmware. The
function most likely passes in a pointer to a radio command and
checks which radio setup command it is. The scalars it checks
correspond to the command ID’s in the technical manual [4].

Since Wyze seems to use the proprietary radio commands,

there is a high chance they follow the recommended packet
format. TI specifies both a Standard Packet Format with fields
for the preamble, sync word, header containing packet length
and/or address, payload, and checksum, as well as an Advanced
Packet Format with the same fields except that the header has
more flexibility. Determining which format Wyze uses will be
important.

With either format, the packet has to have a sync word so
that the Sensor bridge can detect when a packet is about to be
sent and capture it correctly.

E. CC13X0 Software Development Kit
A Software Development Kit (SDK) is a set of software

tools that can be used to create applications for a specific
platform. The Texas Instrument CC13X0 SDK offers flexible
hardware, software, and tools for development of wired and
wireless applications [21]. By comparing captured firmware to
code in the SDK, it is determined that Wyze does use the
CC13X0 SDK for their sensor bridge. The firmware appears to
be using the RFCC26XX_multiMode.c driver suit, which can
be used for both CC13XX chips and CC26XX chips.
Additionally, a number of functions from the SDK relating to
radio setup have been identified within Ghidra, including
RF_fsmSetupState, RF_open, RF_fsmActiveState, and
fsmPowerUpState.

F. Defining Structures
The radio in the CC1310 MCU is set up in proprietary mode

by the command CMD_PROP_RADIO_DIV_SETUP. It is a
structure which specifies details about the packet format and
modes for the radio. The sync word can be between 8 and 32
bits and is set by formatConf.nSwBits [21]. Finding where this
occurs in the firmware will help in determining the sync word.
Since the command is a structure, the sync word length field is
reached by offsets from the command address. Assuming Wyze
uses the same command structure as detailed by TI, setting up
the structure in Ghidra will make the decompiled code easier to
read. The SDK contains C header files which define the radio
commands.

Figure 18. C Parser Configuration

The Ghira C Parser is able to parse header files and
automatically create all the structures from the files. The C
Parser is very finicky, so it is best to create copies of the files to
parse, and simplify the code. This was done by removing any
#ifndef or #define directives, and adding typedef before each
structure that is defined. Then inside the C Parser, a new Parse

Figure 16. CC1310 Firmware Memory Map in Ghidra

Figure 17. Possible Radio Function in Ghidra

x

Configuration was created, adding the header files in the order
in which they are referenced, and using parse options that match
the compiler flags. The C Parser was run with many of the RF
header files from the SDK as outlined in red in Figure 18, to
define all of the structures related to the radio and RF protocol.
Figure 19 shows the CMD_PROP_RADIO_DIV_SETUP
structure from the rf_mailbox.h header file, and in Figure 20 the
same structure defined in Ghidra by the C Parser.

Figure 19. CMD_PROP_RADIO_DIV_SETUP structure

Figure 20. CMD_PROP_RADIO_DIV_SETUP structure in Ghidra

 Using the defined structures, variables in the code can be re-
typed to make the decompiled code easier to read. In the
example below, editing the function signature and parameter
types makes it easier to see which fields in the structures are
being set. This can be seen in Figure 21 and Figure 22 with the
changes underlined in red.

Figure 21.Before Editing Function Signature

Figure 22. After Editing Function Signature

G. Functions Relating to Packets
Some of the functions found in Ghidra that relate to packets

are shown below. More analysis of these functions will be
helpful in determining the packet structure.

• 0000338c_main_loop_maybe
• 000014f0_seems_important_packet
• 00002d34_something_with_packets
• 00003324_big_switch
• 00014e8c_process_packet
• 0000ce6c_more_packet_processing
• 00012c4c_create_packet
• 00006e10_parse_packet

H. Addresses
In the functions relating to packets, there's no data structure

for a packet being passed in as an argument. Instead, the
functions seem to reference specific memory addresses, so it is
likely that incoming and outgoing packets are stored in a buffer
in memory. Analyzing which addresses and used and when can
then be used to create a visualization of the packet fields in
memory an idea of the structure of the packets. The following

details specific addresses and offsets that are accessed most
frequently.

• 0x20001E60
o Referenced in 00014e8c_process_packet,

00012c4c_create_packet,
0000ce6c_more_packet_processing,
00002d34_something_with_packets,
000014f0_seems_important_packet, and
00003324_big_switch

o Explicitly uses the offset +0x134 to make address
0x20001F94 in 00014e8c_process_packet
00012c4c_create_packet,
0000ce6c_more_packet_processing, and
00002d34_something_with_packets

• 0x200012E8,
o Referenced in 00002d34_something_with_packets,

000014f0_seems_important_packet, and
00003324_big_switch, and over 10 other unnamed
functions

o big_switch sets values at the address with varying
offsets, possibly setting the fields in a packet

o something_with_packets accesses the address with
varying offsets, possibly reading fields from a
packet

I. Sensor Firmware
The hardware used for the sensors is not locked and is able

to be read/modified using the JTAG pins on the device [22]Er.
Additionally, some sensors have the bootloader backdoor
enabled, allowing a serial connection to be used to connect to
the device [23]. Failing to disable these access points allows the
firmware on the device to be modified and potentially allows
malicious firmware to be loaded.

VII. CONCLUSION

A. Main Takeaways
Overall, the Wyze Camera and Wyze Sense has quite a few

security vulnerabilities. Lack of sufficient security protocols
led to a massive data breach compromising user information
[6]. Lack of proper authentication methods and weak
encryption means the Wyze Camera has a weak root password
and is vulnerable to MITM attacks and the Wyze Sense is
vulnerable to replay attacks, as shown by the previous and
current semesters.

B. Future Work
Future research should focus on better understanding the

packet structure, so that arbitrary packets can be formed and
sent to the dongle. More analysis on the addresses mentioned in
Section VI.H is a good place to start. Using a JTAG or the
bootloader to read a sensors flash and SRAM would also likely
give some insights. Another area of further research is if the
AES capabilities on the chip are being actively used, and if so,
how the keys are negotiated between devices.

In addition, further research on understanding the packet
structure could be done by sorting through logs and gaining

additional information of commands that have yet to be added
to the parser. This can be done by cross-referencing a
commands hex to functions relating to packets in Ghidra. So
far, most of the commands have yet to be discovered. Students
could also attempt to get OTA captures of communications
between the contact sensor and compare it to those of the
motion sensor and information that have already been gained
from motion sensor packets.

VIII. REFERENCES
[1] D. Hopwood, “Lack of security in Internet of Things devices,” Network

Security, vol. 2014, no. 8, p. 2, Aug. 2014.
[2] “IoT is Coming Even if the Security Isn't Ready: Here's What to Do,”

Wired, 07-Sep-2017. [Online]. Available:
https://www.wired.com/brandlab/2017/06/iot-is-coming-even-if-the-
security-isnt-ready-heres-what-to-do/. [Accessed: 22-Apr-2021].

[3] “Wyze Sense,” Wyze. [Online]. Available: https://wyze.com/wyze-
sense.html. [Accessed: 22-Apr-2021].

[4] “Technical Reference Manual,” TI, Feb-2015. [Online]. Available:
https://www.ti.com/lit/ug/swcu117i/swcu117i.pdf?ts=1612380468517&r
ef_url=https%253A%252F%252Fwww.ti.com%252Fproduct%252FCC
1310. [Accessed: 22-Apr-2021].

[5] “CC1310 SimpleLinkTMUltra-Low-Power Sub-1 GHz Wireless
MCU,” TI, 2015. [Online]. Available:
https://www.ti.com/product/CC1310. [Accessed: 21-Feb-2021].

[6] B. Lovejoy, “Wyze camera security breach: personal data from 2.4M
users,” 9to5Mac, 30-Dec-2019. [Online]. Available:
https://9to5mac.com/2019/12/30/wyze-camera-security/. [Accessed: 20-
Mar-2021].

[7] D. Wroclawski, “Wyze and Guardzilla Security Cameras Have Security
Risks, Consumer Reports Finds,” Consumer Reports, 05-Nov-2019.
[Online]. Available: https://www.consumerreports.org/wireless-security-
cameras/wyze-and-guardzilla-home-security-cameras-have-security-
risks/. [Accessed: 18-Mar-2021].

[8] “Vulnerability Details : CVE-2013-1059,” CVEDetails, 01-Apr-2014.
[Online]. Available: https://www.cvedetails.com/cve/CVE-2013-1059/.
[Accessed: 22-Apr-2021].

[9] “Vulnerability Details : CVE-2017-5972,” CVEDetails, 19-Feb-2019.
[Online]. Available: https://www.cvedetails.com/cve/CVE-2017-5972/.
[Accessed: 22-Apr-2021].

[10] IoT Security: Backdooring a smart camera by creating a malicious
firmware upgrade. YouTube, 2020.

[11] Hclxing, “Reverse Engineering WyzeSense bridge protocol (Part II),” My
Not-So-Boring Life, 06-Jun-2019. [Online]. Available:
https://hclxing.wordpress.com/2019/05/30/reverse-engineering-
wyzesense-bridge-protocol-part-ii/. [Accessed: 22-Apr-2021].

[12] HclX, “HclX/WyzeSensePy,” GitHub. [Online]. Available:
https://github.com/HclX/WyzeSensePy. [Accessed: 22-Apr-2021].

[13] “Packet Format - SimpleLink™ CC13x0 SDK Proprietary RF User's
Guide 2.60.1 documentation,” Texas Instruments. [Online]. Available:
http://software-
dl.ti.com/simplelink/esd/simplelink_cc13x0_sdk/4.10.02.04/exports/doc
s/proprietary-rf/proprietary-rf-users-guide/proprietary-rf/packet-
format.html. [Accessed: 22-Apr-2021].

[14] G. Christiansen, “Data Whitening and Random TX Mode,” Design Note
DN509. [Online]. Available:
https://www.ti.com/lit/an/swra322/swra322.pdf. [Accessed: 22-Apr-
2021].

[15] How mitmproxy works. [Online]. Available:
https://docs.mitmproxy.org/stable/concepts-howmitmproxyworks/.
[Accessed: 22-Apr-2021].

[16] “Ghidra,” National Security Agency. [Online]. Available:
https://www.nsa.gov/resources/everyone/ghidra/. [Accessed: 22-Apr-
2021].

[17] https://www.keil.com/pack/doc/CMSIS/SVD/html/index.html#:~:text=T
he%20CMSIS%20System%20View%20Description,data%20in%20devi
ce%20reference%20manuals

[18] System View Description. [Online]. Available:
https://www.keil.com/pack/doc/CMSIS/SVD/html/index.html#:~:text=T
he%20CMSIS%20System%20View%20Description,data%20in%20devi
ce%20reference%20manuals. [Accessed: 22-Apr-2021].

[19] Bare-metal ARM firmware reverse engineering with Ghidra and SVD-
Loader. 27-Feb-2020 [Online]. Available:
https://www.youtube.com/watch?v=q4CxE5P6RUE. [Accessed: 2-11-
2021]

[20] Leveldown-Security, “leveldown-security/SVD-Loader-Ghidra,”
GitHub. [Online]. Available: https://github.com/leveldown-
security/SVD-Loader-Ghidra. [Accessed: 22-Apr-2021].

[21] “SIMPLELINK-CC13X0-SDK,” SIMPLELINK-CC13X0-SDK Software
development kit (SDK) | TI.com. [Online]. Available:
https://www.ti.com/tool/SIMPLELINK-CC13X0-SDK. [Accessed: 22-
Apr-2021].

[22] Sycophantic, “Sycophantic/Wyzeback,” GitHub. [Online]. Available:
https://github.com/sycophantic/wyzeback. [Accessed: 22-Apr-2021].

[23] Null, “Unbricking Wyze Contact Sensor - pcb reset pin,” Wyze
Community, 04-Feb-2021. [Online]. Available:
https://forums.wyzecam.com/t/unbricking-wyze-contact-sensor-pcb-
reset-pin/146856/130. [Accessed: 22-Apr-2021].

